UMMS Affiliation

Department of Cell Biology

Publication Date


Document Type



Actins; Animals; Carrier Proteins; Cell Membrane; Dictyostelium; Freeze Fracturing; Fungal Proteins; Microfilament Proteins; Mutation; Phagocytosis; Pinocytosis


Cell Biology | Life Sciences | Medicine and Health Sciences


Interactions between the plasma membrane and underlying actin-based cortex have been implicated in membrane organization and stability, the control of cell shape, and various motile processes. To ascertain the function of high affinity actin-membrane associations, we have disrupted by homologous recombination the gene encoding ponticulin, the major high affinity actin-membrane link in Dictyostelium discoideum amoebae. Cells lacking detectable amounts of ponticulin message and protein also are deficient in high affinity actin-membrane binding by several criteria. First, only 10-13% as much endogenous actin cosediments through sucrose and crude plasma membranes from ponticulin-minus cells, as compared with membranes from the parental strain. Second, purified plasma membranes exhibit little or no binding or nucleation of exogenous actin in vitro. Finally, only 10-30% as much endogenous actin partitions with plasma membranes from ponticulin-minus cells after these cells are mechanically unroofed with polylysine-coated coverslips. The loss of the cell's major actin-binding membrane protein appears to be surprisingly benign under laboratory conditions. Ponticulin-minus cells grow normally in axenic culture and pinocytose FITC-dextran at the same rate as do parental cells. The rate of phagocytosis of particles by ponticulin-minus cells in growth media also is unaffected. By contrast, after initiation of development, cells lacking ponticulin aggregate faster than the parental cells. Subsequent morphogenesis proceeds asynchronously, but viable spores can form. These results indicate that ponticulin is not required for cellular translocation, but apparently plays a role in cell patterning during development.

Rights and Permissions

Publisher PDF posted as allowed by the publisher's terms of use policy at: After the Initial Publication Period, RUP will grant to the public the non-exclusive right to copy, distribute, or display the Article under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International license, as described at, or updates thereof.

DOI of Published Version



J Cell Biol. 1994 Sep;126(6):1433-44. Link to article on publisher's website

Journal/Book/Conference Title

The Journal of cell biology

Related Resources

Link to article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.