UMMS Affiliation

UMass Center for Clinical and Translational Science

Publication Date

2021-11-02

Document Type

Article

Disciplines

Data Science | Health Information Technology | Infectious Disease | Translational Medical Research | Virus Diseases

Abstract

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations.

MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements.

RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback.

DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate.

CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.

Keywords

UMCCTS funding, electronic health records, data accuracy, COVID-19

Rights and Permissions

Copyright © The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

DOI of Published Version

10.1093/jamia/ocab217

Source

Pfaff ER, Girvin AT, Gabriel DL, Kostka K, Morris M, Palchuk MB, Lehmann HP, Amor B, Bissell M, Bradwell KR, Gold S, Hong SS, Loomba J, Manna A, McMurry JA, Niehaus E, Qureshi N, Walden A, Zhang XT, Zhu RL, Moffitt RA, Haendel MA, Chute CG; N3C Consortium, Adams WG, Al-Shukri S, Anzalone A, Baghal A, Bennett TD, Bernstam EV, Bernstam EV, Bissell MM, Bush B, Campion TR, Castro V, Chang J, Chaudhari DD, Chen W, Chu S, Cimino JJ, Crandall KA, Crooks M, Davies SJD, DiPalazzo J, Dorr D, Eckrich D, Eltinge SE, Fort DG, Golovko G, Gupta S, Haendel MA, Hajagos JG, Hanauer DA, Harnett BM, Horswell R, Huang N, Johnson SG, Kahn M, Khanipov K, Kieler C, Luzuriaga KR, Maidlow S, Martinez A, Mathew J, McClay JC, McMahan G, Melancon B, Meystre S, Miele L, Morizono H, Pablo R, Patel L, Phuong J, Popham DJ, Pulgarin C, Santos C, Sarkar IN, Sazo N, Setoguchi S, Soby S, Surampalli S, Suver C, Vangala UMR, Visweswaran S, Oehsen JV, Walters KM, Wiley L, Williams DA, Zai A. Synergies between centralized and federated approaches to data quality: a report from the national COVID cohort collaborative. J Am Med Inform Assoc. 2022 Mar 15;29(4):609-618. doi: 10.1093/jamia/ocab217. PMID: 34590684; PMCID: PMC8500110. Link to article on publisher's site

Journal/Book/Conference Title

Journal of the American Medical Informatics Association : JAMIA

Comments

The UMass Center for Clinical and Translational Science (UMCCTS), UL1TR001453, helped fund this study.

Full author list omitted for brevity. For the full list of authors, see article.

Related Resources

Link to Article in PubMed

PubMed ID

34590684

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS