Title
Using unnatural amino acid mutagenesis to probe the regulation of PRMT1.
UMMS Affiliation
Department of Biochemistry and Molecular Pharmacology
Publication Date
2014-03-21
Document Type
Article
Subjects
Amino Acid Substitution; Benzophenones; Cross-Linking Reagents; Histones; Humans; Immunoprecipitation; K562 Cells; Methylation; *Mutagenesis, Site-Directed; Phenylalanine; Phosphorylation; Protein Processing, Post-Translational; Protein-Arginine N-Methyltransferases; Repressor Proteins; Substrate Specificity; Tyrosine
Disciplines
Biochemistry | Enzymes and Coenzymes | Medicinal-Pharmaceutical Chemistry | Therapeutics
Abstract
Protein arginine methyltransferase 1 (PRMT1)-dependent methylation contributes to the onset and progression of numerous diseases (e.g., cancer, heart disease, ALS); however, the regulatory mechanisms that control PRMT1 activity are relatively unexplored. We therefore set out to decipher how phosphorylation regulates PRMT1 activity. Curated mass spectrometry data identified Tyr291, a residue adjacent to the conserved THW loop, as being phosphorylated. Natural and unnatural amino acid mutagenesis, including the incorporation of p-carboxymethyl-l-phenylalanine (pCmF) as a phosphotyrosine mimic, were used to show that Tyr291 phosphorylation alters the substrate specificity of PRMT1. Additionally, p-benzoyl-l-phenylalanine (pBpF) was incorporated at the Tyr291 position, and cross-linking experiments with K562 cell extracts identified several proteins (e.g., hnRNPA1 and hnRNP H3) that bind specifically to this site. Moreover, we also demonstrate that Tyr291 phosphorylation impairs PRMT1's ability to bind and methylate both proteins. In total, these studies demonstrate that Tyr291 phosphorylation alters both PRMT1 substrate specificity and protein-protein interactions.
DOI of Published Version
10.1021/cb400859z
Source
ACS Chem Biol. 2014 Mar 21;9(3):649-55. doi: 10.1021/cb400859z. Epub 2014 Jan 6. Link to article on publisher's site
Journal/Book/Conference Title
ACS chemical biology
Related Resources
Repository Citation
Rust HL, Subramanian V, West GM, Young DD, Schultz PG, Thompson PR. (2014). Using unnatural amino acid mutagenesis to probe the regulation of PRMT1.. Thompson Lab Publications. https://doi.org/10.1021/cb400859z. Retrieved from https://escholarship.umassmed.edu/thompson/17
Comments
At the time of publication, Paul Thompson was not yet affiliated with UMass Medical School.