Title

SPEN integrates transcriptional and epigenetic control of X-inactivation

UMMS Affiliation

Program in Systems Biology; Department of Biochemistry and Molecular Pharmacology

Publication Date

2020-02-05

Document Type

Article

Disciplines

Amino Acids, Peptides, and Proteins | Biochemistry, Biophysics, and Structural Biology | Cell and Developmental Biology | Genetics and Genomics | Nucleic Acids, Nucleotides, and Nucleosides | Systems Biology

Abstract

Xist represents a paradigm for the function of long non-coding RNA in epigenetic regulation, although how it mediates X-chromosome inactivation (XCI) remains largely unexplained. Several proteins that bind to Xist RNA have recently been identified, including the transcriptional repressor SPEN(1-3), the loss of which has been associated with deficient XCI at multiple loci(2-6). Here we show in mice that SPEN is a key orchestrator of XCI in vivo and we elucidate its mechanism of action. We show that SPEN is essential for initiating gene silencing on the X chromosome in preimplantation mouse embryos and in embryonic stem cells. SPEN is dispensable for maintenance of XCI in neural progenitors, although it significantly decreases the expression of genes that escape XCI. We show that SPEN is immediately recruited to the X chromosome upon the upregulation of Xist, and is targeted to enhancers and promoters of active genes. SPEN rapidly disengages from chromatin upon gene silencing, suggesting that active transcription is required to tether SPEN to chromatin. We define the SPOC domain as a major effector of the gene-silencing function of SPEN, and show that tethering SPOC to Xist RNA is sufficient to mediate gene silencing. We identify the protein partners of SPOC, including NCoR/SMRT, the m(6)A RNA methylation machinery, the NuRD complex, RNA polymerase II and factors involved in the regulation of transcription initiation and elongation. We propose that SPEN acts as a molecular integrator for the initiation of XCI, bridging Xist RNA with the transcription machinery-as well as with nucleosome remodellers and histone deacetylases-at active enhancers and promoters.

Keywords

Dosage compensation, Embryonic stem cells, Gene regulation, Long non-coding RNAs

DOI of Published Version

10.1038/s41586-020-1974-9

Source

Dossin F, Pinheiro I, Żylicz JJ, Roensch J, Collombet S, Le Saux A, Chelmicki T, Attia M, Kapoor V, Zhan Y, Dingli F, Loew D, Mercher T, Dekker J, Heard E. SPEN integrates transcriptional and epigenetic control of X-inactivation. Nature. 2020 Feb;578(7795):455-460. doi: 10.1038/s41586-020-1974-9. Epub 2020 Feb 5. PMID: 32025035; PMCID: PMC7035112. Link to article on publisher's site

Journal/Book/Conference Title

Nature

Related Resources

Link to Article in PubMed

PubMed ID

32025035

Share

COinS