UMMS Affiliation

Department of Cell Biology

Publication Date


Document Type



Animals; Bone Morphogenetic Proteins; Cells, Cultured; Chick Embryo; Chondrocytes; Collagen; Core Binding Factor Alpha 1 Subunit; Core Binding Factor Alpha 2 Subunit; Core Binding Factor alpha Subunits; DNA-Binding Proteins; Hypertrophy; Luciferases; *Neoplasm Proteins; Phosphoproteins; Promoter Regions, Genetic; *Proto-Oncogene Proteins; *Signal Transduction; Smad Proteins; Smad5 Protein; Trans-Activators; Transcription Factors; Transcription, Genetic; Transfection


Cell Biology


BACKGROUND: Intracellular signaling triggered by bone morphogenetic proteins (BMPs) results in activated Smad complexes that regulate transcription of BMP-responsive genes. However, the low specificity of Smad binding to regulatory sequences implies that additional tissue-specific transcription factors are also needed. Runx2 (Cbfal) is a transcription factor required for bone formation. We have examined the role of Smads and Runx2 in BMP induction of type X collagen, which is a marker of chondrocyte hypertrophy leading to endochondral bone formation.

METHODS: Pre-hypertrophic chondrocytes from the cephalic portion of the chick embryo sternum were placed in culture in the presence or absence of rhBMP-2. Cultures were transiently transfected with DNA containing the BMP-responsive type X collagen promoter upstream of the luciferase gene. The cultures were also transfected with plasmids, causing over-expression of Smads or Runx2, or both. After 24-48 hours, cell extracts were examined for levels of luciferase expression.

RESULTS: In the presence of BMP-2, chondrocytes over-expressing BMP-activated Smadl or Smad5 showed significant enhancement of luciferase production compared with that seen with BMP alone. This enhancement was not observed with over-expression of Smad2, a transforming growth factor beta (TGF-beta)-activated Smad. Overexpression of Runx2 in BMP-treated cultures increased transcriptional activity to levels similar to those seen with Smads 1 or 5. When chondrocytes were simultaneously transfected with both Runx2 and Smad 1 or 5, promoter activity was further increased, indicating that BMP-stimulated Smad activity can be augmented by increasing the levels of Runx2.

CONCLUSIONS: These results implicate the skeletal tissue transcription factor Runx2 in regulation of chondrocyte hypertrophy and suggest that maximal transcription of the type X collagen gene in pre-hypertrophic chondrocytes involves interaction of BMP-stimulated Smads with Runx2. Clinical Relevance: Many skeletal abnormalities are associated with impaired regulation of chondrocyte hypertrophy in growth plates. These studies demonstrate that both BMP-activated Smads and Runx2 levels can modulate chondrocyte transition to hypertrophy.


J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S15-22. Link to article on publisher's website

Journal/Book/Conference Title

The Journal of bone and joint surgery. American volume

Related Resources

Link to Article in PubMed

PubMed ID


Included in

Cell Biology Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.