Title
Secreted frizzled related protein 1 is a target to improve fracture healing
UMMS Affiliation
Department of Cell Biology; Department of Orthopedics and Physical Rehabilitation
Publication Date
2009-07-21
Document Type
Article
Subjects
Animals; *Bone Remodeling; Bony Callus; Cartilage; Cell Differentiation; Cell Lineage; Cell Proliferation; Disease Models, Animal; *Fracture Healing; Gene Expression Regulation; Intercellular Signaling Peptides and; Proteins; Male; Membrane Proteins; Mesenchymal Stem Cells; Mice; Mice, Knockout; Osteoblasts; Signal Transduction; Tibia; Tibial Fractures; Time Factors; Wnt Proteins
Disciplines
Cell Biology
Abstract
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss-of-function mouse models in which 32-week-old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1(-/-) mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28-day fracture repair process in the sFRP1(-/-) mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss-of-function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1(-/-) mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging.
DOI of Published Version
10.1002/jcp.21747
Source
J Cell Physiol. 2009 Jul;220(1):174-81. Link to article on publisher's site
Journal/Book/Conference Title
Journal of cellular physiology
Related Resources
PubMed ID
19301255
Repository Citation
Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB. (2009). Secreted frizzled related protein 1 is a target to improve fracture healing. Stein, Stein, Lian, vanWijnen Lab Publications. https://doi.org/10.1002/jcp.21747. Retrieved from https://escholarship.umassmed.edu/stein/39