Title
The architectural organization of human stem cell cycle regulatory machinery
UMMS Affiliation
Department of Cell Biology
Publication Date
2012-05-01
Document Type
Article
Subjects
Embryonic Stem Cells; Pluripotent Stem Cells; Histones; Gene Expression
Disciplines
Cell Biology
Abstract
Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective.
Source
Curr Pharm Des. 2012 May 1;18(13):1679-85.
Journal/Book/Conference Title
Current pharmaceutical design
Related Resources
PubMed ID
22394165
Repository Citation
Stein GS, Stein JL, Van Wijnen AJ, Lian JB, Montecino MA, Medina RF, Kapinas K, Ghule PN, Grandy R, Zaidi SK, Becker KA. (2012). The architectural organization of human stem cell cycle regulatory machinery. Stein, Stein, Lian, vanWijnen Lab Publications. Retrieved from https://escholarship.umassmed.edu/stein/240