UMMS Affiliation

Department of Radiology; Sluder Lab

Publication Date

2017-12-19

Document Type

Article

Disciplines

Biology | Cell Biology

Abstract

For hundreds of years, biologists have studied accessible organisms such as garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of biologists with the promise of mystery and discovery. Time and time again, what we learn from such simple organisms has emphasized our common biological origins by proving to be applicable to more complex organisms, including humans. Yet, biologists are increasingly being tasked with developing applications from the known, rather than being allowed to follow a path to discovery of the as yet unknown. Here, we provide examples of important lessons learned from research using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that could subsequently be tested for conservation in human cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition.

Keywords

C. elegans, drosophila, invertebrates, sea urchin, yeast

Rights and Permissions

© 2017. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

DOI of Published Version

10.1242/dmm.031203

Source

Dis Model Mech. 2017 Dec 19;10(12):1381-1389. doi: 10.1242/dmm.031203. Link to article on publisher's site

Journal/Book/Conference Title

Disease models and mechanisms

Related Resources

Link to Article in PubMed

PubMed ID

29259023

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.