Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT

UMMS Affiliation

Department of Radiology, Division of Nuclear Medicine

Publication Date


Document Type



Blood Circulation; Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography; Heart; Imaging, Three-Dimensional; Signal-To-Noise Ratio; Stroke Volume; Time Factors




Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could achieve a much smaller bias level in the early uptake stage of the imaging period. Furthermore, it could allow better separation of the perfusion defect from the normal at both the early and the late stages of the imaging period.

DOI of Published Version



Phys Med Biol. 2012 Sep 7;57(17):5523-42. doi: 10.1088/0031-9155/57/17/5523. Link to article on publisher's site

Journal/Book/Conference Title

Physics in medicine and biology

Related Resources

Link to Article in PubMed

PubMed ID