UMMS Affiliation

Department of Population and Quantitative Health Sciences

Publication Date

2021-07-01

Document Type

Article

Disciplines

Statistics and Probability

Abstract

Contemporary statistical publications rely on simulation to evaluate performance of new methods and compare them with established methods. In the context of random-effects meta-analysis of log-odds-ratios, we investigate how choices in generating data affect such conclusions. The choices we study include the overall log-odds-ratio, the distribution of probabilities in the control arm, and the distribution of study-level sample sizes. We retain the customary normal distribution of study-level effects. To examine the impact of the components of simulations, we assess the performance of the best available inverse-variance-weighted two-stage method, a two-stage method with constant sample-size-based weights, and two generalized linear mixed models. The results show no important differences between fixed and random sample sizes. In contrast, we found differences among data-generation models in estimation of heterogeneity variance and overall log-odds-ratio. This sensitivity to design poses challenges for use of simulation in choosing methods of meta-analysis.

Keywords

Meta-analysis, odds-ratio, random probabilities, random sample sizes, random-effects model

Rights and Permissions

Copyright The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

DOI of Published Version

10.1177/09622802211013065

Source

Kulinskaya E, Hoaglin DC, Bakbergenuly I. Exploring consequences of simulation design for apparent performance of methods of meta-analysis. Stat Methods Med Res. 2021 Jul;30(7):1667-1690. doi: 10.1177/09622802211013065. Epub 2021 Jun 10. PMID: 34110941; PMCID: PMC8411476. Link to article on publisher's site

Journal/Book/Conference Title

Statistical methods in medical research

PubMed ID

34110941

Related Resources

Link to Article in PubMed

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS