Title
Design-based random permutation models with auxiliary information
UMMS Affiliation
Department of Medicine, Division of Preventive and Behavioral Medicine
Publication Date
2012-01-01
Document Type
Article
Disciplines
Statistical Models
Abstract
We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.
Keywords
auxiliary variable, design-based inference, prediction, finite sampling, random permutation model, simultaneous permutation
DOI of Published Version
10.1080/02331888.2010.545408
Source
Li W, Stanek EJ 3rd, Singer JM. Design-based random permutation models with auxiliary information(¶). Statistics (Ber). 2012 Jan 1;46(5):663-671. Link to article on publisher's site
Journal/Book/Conference Title
Statistics
Related Resources
PubMed ID
23645951
Repository Citation
Li W, Stanek EJ, Singer JM. (2012). Design-based random permutation models with auxiliary information. Preventive and Behavioral Medicine Publications. https://doi.org/10.1080/02331888.2010.545408. Retrieved from https://escholarship.umassmed.edu/prevbeh_pp/286