Title

Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector

UMMS Affiliation

Gene Therapy Center; Department of Pediatrics

Publication Date

2004-09-09

Document Type

Article

Subjects

Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gene Expression; Gene Therapy; Genetic Vectors; Pseudomonas aeruginosa

Disciplines

Allergy and Immunology | Pediatrics | Respiratory Tract Diseases

Abstract

Despite extensive experience with recombinant adeno-associated virus (rAAV) 2 vectors in the lung, gene expression has been low in the context of cystic fibrosis (CF) gene therapy, where the large size of the cystic fibrosis transmembrane conductance regulator (CFTR) coding sequence has prompted the use of compact endogenous promoter elements. We evaluated the possibility that gene expression from recombinant adeno-associated virus (rAAV) could be improved by using alternate AAV capsid serotypes that target different cell-surface receptors (i.e., rAAV5) and/or using stronger promoters. The relative activities of the cytomegalovirus (CMV) Rous sarcoma virus (RSV) promoter, the CMV enhancer/beta-actin (CB) promoter combination, and the CMV enhancer/RSV promoter hybrid were assessed in vitro in a CF bronchial cell line. The CB promoter was the most efficient. AAV capsid serotypes, rAAV2 and rAAV5, were also compared, and rAAV5 was found to be significantly more efficient. Based on these studies a rAAV5-CB-promoter-driven CFTR minigene vector was then used to correct the CF chloride transport defect in vitro, as well as the hyperinflammatory lung phenotype in Pseudomonas-agarose bead challenged CF mouse lungs in vivo. These studies provide functional characterization of a new version of rAAV-CFTR vectors.

Source

Hum Gene Ther. 2004 Sep;15(9):832-41.

Journal/Book/Conference Title

Human gene therapy

Comments

Christian Mueller is cited on this publication as Christian Muller. At the time of publication, Christian Mueller, Sofia Braag, Qiushi Tang and Terence Flotte were not yet affiliated with the University of Massachusetts Medical School.

Related Resources

Link to Article in PubMed

PubMed ID

15353038

Share

COinS