UMMS Affiliation

Department of Quantitative Health Sciences; Department of Pediatrics

Publication Date


Document Type



Malaria, Falciparum; Plasmodium falciparum; Immunity, Innate


Immunology and Infectious Disease | Parasitic Diseases


Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components - a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.

Rights and Permissions

Copyright: © Pinkevych et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI of Published Version



Pinkevych M, Petravic J, Chelimo K, Kazura JW, Moormann AM, et al. (2012) The Dynamics of Naturally Acquired Immunity to Plasmodium falciparum Infection. PLoS Comput Biol 8(10): e1002729. doi:10.1371/journal.pcbi.1002729. Link to article on publisher's site

Journal/Book/Conference Title

PLoS computational biology

Related Resources

Link to Article in PubMed

PubMed ID




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.