UMMS Affiliation

Department of Pediatrics; Program in Molecular Medicine

Publication Date

2007-10-19

Document Type

Article

Subjects

Adolescent; Adult; B-Lymphocytes; *Computer Simulation; Herpesvirus 4, Human; Humans; Infectious Mononucleosis; *Models, Immunological; Palatine Tonsil; Software; Stochastic Processes; Time Factors; Virus Activation; Virus Latency; Virus Physiological Phenomena

Disciplines

Immunology and Infectious Disease | Pediatrics

Abstract

The possibility of using computer simulation and mathematical modeling to gain insight into biological and other complex systems is receiving increased attention. However, it is as yet unclear to what extent these techniques will provide useful biological insights or even what the best approach is. Epstein-Barr virus (EBV) provides a good candidate to address these issues. It persistently infects most humans and is associated with several important diseases. In addition, a detailed biological model has been developed that provides an intricate understanding of EBV infection in the naturally infected human host and accounts for most of the virus' diverse and peculiar properties. We have developed an agent-based computer model/simulation (PathSim, Pathogen Simulation) of this biological model. The simulation is performed on a virtual grid that represents the anatomy of the tonsils of the nasopharyngeal cavity (Waldeyer ring) and the peripheral circulation--the sites of EBV infection and persistence. The simulation is presented via a user friendly visual interface and reproduces quantitative and qualitative aspects of acute and persistent EBV infection. The simulation also had predictive power in validation experiments involving certain aspects of viral infection dynamics. Moreover, it allows us to identify switch points in the infection process that direct the disease course towards the end points of persistence, clearance, or death. Lastly, we were able to identify parameter sets that reproduced aspects of EBV-associated diseases. These investigations indicate that such simulations, combined with laboratory and clinical studies and animal models, will provide a powerful approach to investigating and controlling EBV infection, including the design of targeted anti-viral therapies.

Rights and Permissions

Copyright: © 2007 Duca et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI of Published Version

10.1371/journal.ppat.0030137

Source

Duca KA, Shapiro M, Delgado-Eckert E, Hadinoto V, Jarrah AS, et al. (2007) A Virtual Look at Epstein–Barr Virus Infection: Biological Interpretations. PLoS Pathog 3(10): e137. doi:10.1371/journal.ppat.0030137. Link to article on publisher's site

Journal/Book/Conference Title

PLoS pathogens

Related Resources

Link to Article in PubMed

PubMed ID

17953479

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.