Title

(alpha-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging

UMMS Affiliation

Department of Orthopedics and Physical Rehabilitation; Department of Cell and Developmental Biology; Department of Biochemistry and Molecular Pharmacology

Publication Date

2012-09-25

Document Type

Article

Subjects

Animals; Calcium Fluoride; Contrast Media; Femur; Fluorides; Infrared Rays; Materials Testing; Mice; Microscopy, Fluorescence; Molecular Conformation; Muscle, Skeletal; Nanoparticles; Particle Size; Porosity; Rats; Swine; Yttrium

Disciplines

Bioimaging and Biomedical Optics | Cell Biology | Nanoscience and Nanotechnology | Orthopedics

Abstract

We describe the development of novel and biocompatible core/shell (alpha-NaYbF(4):Tm(3+))/CaF(2) nanoparticles that exhibit highly efficient NIR(in)-NIR(out) upconversion (UC) for high contrast and deep bioimaging. When excited at ~980 nm, these nanoparticles emit photoluminescence (PL) peaked at ~800 nm. The quantum yield of this UC PL under low power density excitation (~0.3 W/cm(2)) is 0.6 +/- 0.1%. This high UC PL efficiency is realized by suppressing surface quenching effects via heteroepitaxial growth of a biocompatible CaF(2) shell, which results in a 35-fold increase in the intensity of UC PL from the core. Small-animal whole-body UC PL imaging with exceptional contrast (signal-to-background ratio of 310) is shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles (700 pmol/kg). High-contrast UC PL imaging of deep tissues is also demonstrated, using a nanoparticle-loaded synthetic fibrous mesh wrapped around rat femoral bone and a cuvette with nanoparticle aqueous dispersion covered with a 3.2 cm thick animal tissue (pork).

DOI of Published Version

10.1021/nn302972r

Source

ACS Nano. 2012 Sep 25;6(9):8280-7. Epub 2012 Sep 4. Link to article on publisher's site

Journal/Book/Conference Title

ACS nano

Comments

Co-author Artem B. Kutikov is a doctoral student in the Cell Biology program in the Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.

Related Resources

Link to Article in PubMed

PubMed ID

22928629

Share

COinS