UMMS Affiliation

Department of Radiation Oncology

Publication Date

2021-03-01

Document Type

Article

Disciplines

Artificial Intelligence and Robotics | Physics | Radiation Medicine

Abstract

PURPOSE: To develop a knowledge-based planning (KBP) model that predicts dosimetric indices and facilitates planning in CyberKnife intracranial stereotactic radiosurgery/radiotherapy (SRS/SRT).

METHODS: Forty CyberKnife SRS/SRT plans were retrospectively used to build a linear KBP model which correlated the equivalent radius of the PTV (req_PTV ) and the equivalent radius of volume that receives a set of prescription dose (req_Vi , where Vi = V10% , V20% ... V120% ). To evaluate the model's predictability, a fourfold cross-validation was performed for dosimetric indices such as gradient measure (GM) and brain V50% . The accuracy of the prediction was quantified by the mean and the standard deviation of the difference between planned and predicted values, (i.e., DeltaGM = GMpred - GMclin and fractional DeltaV50% = (V50%pred - V50%clin )/V50%clin ) and a coefficient of determination, R(2) . Then, the KBP model was incorporated into the planning for another 22 clinical cases. The training plans and the KBP test plans were compared in terms of the new conformity index (nCI) as well as the planning efficiency.

RESULTS: Our KBP model showed desirable predictability. For the 40 training plans, the average prediction error from cross-validation was only 0.36 +/- 0.06 mm for DeltaGM, and 0.12 +/- 0.08 for DeltaV50% . The R(2) for the linear fit between req_PTV and req_vi was 0.985 +/- 0.019 for isodose volumes ranging from V10% to V120% ; particularly, R(2) = 0.995 for V50% and R(2) = 0.997 for V100% . Compared to the training plans, our KBP test plan nCI was improved from 1.31 +/- 0.15 to 1.15 +/- 0.08 (P < 0.0001). The efficient automatic generation of the optimization constraints by using our model requested no or little planner's intervention.

CONCLUSION: We demonstrated a linear KBP based on PTV volumes that accurately predicts CyberKnife SRS/SRT planning dosimetric indices and greatly helps achieve superior plan quality and planning efficiency.

Keywords

Cyberknife, knowledge-based planning, stereotactic radiosurgery, stereotactic radiotherapy

Rights and Permissions

Copyright © 2021 The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI of Published Version

10.1002/acm2.13173

Source

Yu S, Xu H, Zhang Y, Zhang X, Dyer MA, Hirsch AE, Tam Truong M, Zhen H. Knowledge-based planning in robotic intracranial stereotactic radiosurgery treatments. J Appl Clin Med Phys. 2021 Mar;22(3):48-54. doi: 10.1002/acm2.13173. Epub 2021 Feb 9. PMID: 33560592; PMCID: PMC7984472. Link to article on publisher's site

Journal/Book/Conference Title

Journal of applied clinical medical physics

Related Resources

Link to Article in PubMed

PubMed ID

33560592

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS