UMMS Affiliation

Department of Ophthalmology and Visual Sciences

Publication Date

2021-01-21

Document Type

Article

Disciplines

Congenital, Hereditary, and Neonatal Diseases and Abnormalities | Eye Diseases | Molecular Genetics | Ophthalmology

Abstract

Mutations in retinitis pigmentosa GTPase regulator (RPGR) cause severe retinal ciliopathy, X-linked retinitis pigmentosa. Although two major alternatively spliced isoforms, RPGRex1-19 and RPGRORF15, are expressed, the relative importance of these isoforms in disease pathogenesis is unclear. Here, we analyzed fibroblast samples from eight patients and found that all of them form longer cilia than normal controls, albeit to different degrees. Although all mutant RPGRORF15 messenger RNAs (mRNAs) are unstable, their steady-state levels were similar or higher than those in the control cells, suggesting there may be increased transcription. Three of the fibroblasts that had higher levels of mutant RPGRORF15 mRNA also exhibited significantly higher levels of RPGRex1-19 mRNA. Four samples with unaltered RPGRex1-19 levels carried mutations in RPGRORF15 that resulted in this isoform being relatively less stable. Thus, in all cases, the RPGRex1-19/RPGRORF15 isoform ratio was increased, and this was highly correlative to the cilia extension defect. Moreover, overexpression of RPGRex1-19 (mimicking the increase in RPGRex1-19 to RPGRORF15 isoform ratio) or RPGRORF15 (mimicking reduction of the ratio) resulted in significantly longer or shorter cilia, respectively. Notably, the cilia length defect appears to be attributable to both the loss of the wild-type RPGRORF15 protein and to the higher levels of the RPGRex1-19 isoform, indicating that the observed defect is due to the altered isoform ratios. These results suggest that maintaining the optimal RPGRex1-9 to RPGRORF15 ratio is critical for cilia growth and that designing strategies that focus on the best ways to restore the RPGRex1-19/RPGRORF15 ratio may lead to better therapeutic outcomes.

Keywords

mutation, fibroblasts, exons, protein, isoforms, retinitis pigmentosa, rna, messenger, cilia, x-linked inheritance

Rights and Permissions

© The Author(s) 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

DOI of Published Version

10.1093/hmg/ddaa269

Source

Moreno-Leon L, West EL, O'Hara-Wright M, Li L, Nair R, He J, Anand M, Sahu B, Chavali VRM, Smith AJ, Ali RR, Jacobson SG, Cideciyan AV, Khanna H. RPGR isoform imbalance causes ciliary defects due to exon ORF15 mutations in X-linked retinitis pigmentosa (XLRP). Hum Mol Genet. 2021 Jan 21;29(22):3706-3716. doi: 10.1093/hmg/ddaa269. PMID: 33355362; PMCID: PMC7823108. Link to article on publisher's site

Journal/Book/Conference Title

Human molecular genetics

Related Resources

Link to Article in PubMed

PubMed ID

33355362

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS