UMMS Affiliation

Department of Medicine

Publication Date

2021-01-26

Document Type

Article

Disciplines

Amino Acids, Peptides, and Proteins | Biochemistry | Chemistry | Molecular Biology | Structural Biology

Abstract

High performance liquid chromatography has been employed for decades to enhance detection sensitivity and quantification of complex analytes within biological mixtures. Among these analytes, glycans released from glycoproteins and glycolipids have been characterized as underivatized or fluorescently tagged derivatives by HPLC coupled to various detection methods. These approaches have proven extremely useful for profiling the structural diversity of glycoprotein and glycolipid glycosylation but require the availability of glycan standards and secondary orthogonal degradation strategies to validate structural assignments. A robust method for HPLC separation of glycans as their permethylated derivatives, coupled with in-line MSn fragmentation to assign structural features independent of standards, would significantly enhance the depth of knowledge obtainable from biological samples. Here, we report an optimized workflow for LC-MS analysis of permethylated glycans that includes sample preparation, mobile phase optimization, and MSn method development to resolve structural isomers on-the-fly. We report baseline separation and MSn fragmentation of isomeric N- and O-glycan structures, aided by supplementing mobile phases with Li+, which simplifies adduct heterogeneity and facilitates cross-ring fragmentation to obtain valuable monosaccharide linkage information. Our workflow has been adapted from standard proteomics-based workflows and, therefore, provides opportunities for laboratories with expertise in proteomics to acquire glycomic data with minimal deviation from existing buffer systems, chromatography media, and instrument configurations. Furthermore, our workflow does not require a mass spectrometer with high-resolution/accurate mass capabilities. The rapidly evolving appreciation of the biological significance of glycans for human health and disease requires the implementation of high-throughput methods to identify and quantify glycans harvested from sample sets of sufficient size to achieve appropriately powered statistical significance. The LC-MSn approach we report generates glycan isomeric separations, robust structural characterization, and is amenable to auto-sampling with associated throughput enhancements.

Keywords

Glycomics, HPLC, Mass Spectrometry, N-Glycosylation, O-glycosylation, Separation Technologies

Rights and Permissions

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of Published Version

10.1074/mcp.RA120.002266

Source

Kurz S, Sheikh MO, Lu S, Wells L, Tiemeyer M. Separation and Identification of Permethylated Glycan Isomers by Reversed Phase NanoLC-NSI-MSn. Mol Cell Proteomics. 2021 Jan 26;20:100045. doi: 10.1074/mcp.RA120.002266. Epub ahead of print. PMID: 33376194. Link to article on publisher's site

Journal/Book/Conference Title

Molecular and cellular proteomics : MCP

Related Resources

Link to Article in PubMed

PubMed ID

33376194

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS