UMMS Affiliation

Department of Neurobiology, Brudnick Neuropsychiatric Research Institute; Graduate School of Biomedical Sciences; Martin Lab

Publication Date

2020-11-26

Document Type

Article

Disciplines

Neuroscience and Neurobiology | Physiology

Abstract

Body temperature is an important physiological parameter in many studies of laboratory mice. Continuous assessment of body temperature has traditionally required surgical implantation of a telemeter, but this invasive procedure adversely impacts animal welfare. Near-infrared thermography provides a non-invasive alternative by continuously measuring the highest temperature on the outside of the body (Tskin), but the reliability of these recordings as a proxy for continuous core body temperature (Tcore) measurements has not been assessed. Here, Tcore (30 s resolution) and Tskin (1 s resolution) were continuously measured for three days in mice exposed to ad libitum and restricted feeding conditions. We subsequently developed an algorithm that optimised the reliability of a Tskin-derived estimate of Tcore. This identified the average of the maximum Tskin per minute over a 30-min interval as the optimal way to estimate Tcore. Subsequent validation analyses did however demonstrate that this Tskin-derived proxy did not provide a reliable estimate of the absolute Tcore due to the high between-animal variability in the relationship between Tskin and Tcore. Conversely, validation showed that Tskin-derived estimates of Tcore reliably describe temporal patterns in physiologically-relevant Tcore changes and provide an excellent measure to perform within-animal comparisons of relative changes in Tcore.

Keywords

Physiology, Animal physiology

Rights and Permissions

Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

DOI of Published Version

10.1038/s41598-020-77786-5

Source

van der Vinne V, Pothecary CA, Wilcox SL, McKillop LE, Benson LA, Kolpakova J, Tam SKE, Krone LB, Fisk AS, Wilson TS, Yamagata T, Cantley J, Vyazovskiy VV, Peirson SN. Continuous and non-invasive thermography of mouse skin accurately describes core body temperature patterns, but not absolute core temperature. Sci Rep. 2020 Nov 26;10(1):20680. doi: 10.1038/s41598-020-77786-5. PMID: 33244132; PMCID: PMC7693264. Link to article on publisher's site

Journal/Book/Conference Title

Scientific reports

Related Resources

Link to Article in PubMed

PubMed ID

33244132

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS