UMMS Affiliation

Program in Bioinformatics and Integrative Biology

Publication Date

2020-04-25

Document Type

Article Postprint

Disciplines

Amino Acids, Peptides, and Proteins | Biochemical Phenomena, Metabolism, and Nutrition | Biochemistry | Bioinformatics | Computational Biology | Ecology and Evolutionary Biology | Genomics | Integrative Biology | Molecular Biology

Abstract

Predatory gastropods of the superfamily Conoidea number over 12,000 living species. The evolutionary success of this lineage can be explained by the ability of conoideans to produce complex venoms for hunting, defense and competitive interactions. Whereas venoms of cone snails (family Conidae) have become increasingly well studied, the venoms of most other conoidean lineages remain largely uncharacterized. In the present study we present the venom gland transcriptomes of two species of the genus Clavus that belong to the family Drilliidae. Venom gland transcriptomes of two specimens of Clavus canalicularis, and two specimens of Cv. davidgilmouri were analyzed, leading to the identification of a total of 1,176 putative venom peptide toxins ("drillipeptides"). Based on the combined evidence of secretion signal sequence identity, entire precursor similarity search (BLAST), and the orthology inference, putative Clavus toxins were assigned to 158 different gene families. The majority of identified transcripts comprise signal, pro-, mature peptide, and post- regions, with a typically short ( < 50 amino acids) and cysteine-rich mature peptide region. Thus drillipeptides are structurally similar to conotoxins. However, convincing homology with known groups of Conus toxins was only detected for very few toxin families. Among these are Clavus counterparts of Conus venom insulins (drillinsulins), porins (drilliporins), highly diversified lectins (drillilectins). The short size of most drillipeptpides and structural similarity to conotoxins was unexpected, given that most related conoidean gastropod families (Terebridae and Turridae) possess longer mature peptide regions. Our findings indicate that, similar to conotoxins, drillipeptides may represent a valuable resource for future pharmacological exploration.

Keywords

Clavus, Conoidea, drillipeptides, transcriptome, venom, venom gland

Rights and Permissions

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI of Published Version

10.1093/gbe/evaa083

Source

Lu A, Watkins M, Li Q, Robinson SD, Concepcion GP, Yandell M, Weng Z, Olivera BM, Safavi-Hemami H, Fedosov AE. Transcriptomic profiling reveals extraordinary diversity of venom peptides in unexplored predatory gastropods of the genus Clavus. Genome Biol Evol. 2020 Apr 25:evaa083. doi: 10.1093/gbe/evaa083. Epub ahead of print. PMID: 32333764. Link to article on publisher's site

Journal/Book/Conference Title

Genome biology and evolution

Related Resources

Link to Article in PubMed

PubMed ID

32333764

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS