UMMS Affiliation

Department of Molecular, Cell and Cancer Biology

Publication Date


Document Type



Amino Acids, Peptides, and Proteins | Microbiology | Molecular Biology | Viruses


HIV-1 Nef enhances virion infectivity by counteracting host restriction factor SERINC5; however, the impact of natural Nef polymorphisms on this function is largely unknown. We characterize SERINC5 downregulation activity of 91 primary HIV-1 subtype B nef alleles, including isolates from 45 elite controllers and 46 chronic progressors. Controller-derived Nef clones display lower ability to downregulate SERINC5 (median 80% activity) compared with progressor-derived clones (median 96% activity) (p = 0.0005). We identify 18 Nef polymorphisms associated with differential function, including two CTL escape mutations that contribute to lower SERINC5 downregulation: K94E, driven by HLA-B( *)08, and H116N, driven by the protective allele HLA-B( *)57. HIV-1 strains encoding Nef K94E and/or H116N display lower infectivity and replication capacity in the presence of SERINC5. Our results demonstrate that natural polymorphisms in HIV-1 Nef can impair its ability to internalize SERINC5, indicating that variation in this recently described function may contribute to differences in viral pathogenesis.


HIV-1 Nef, elite controllers, host restriction, serine incorporator, viral infectivity, viral pathogenesis

Rights and Permissions

Copyright 2019 The Author(s). This is an open access article under the CC BY-NC-ND license (

DOI of Published Version



Cell Rep. 2019 Nov 5;29(6):1449-1457.e5. doi: 10.1016/j.celrep.2019.10.007. Link to article on publisher's site

Journal/Book/Conference Title

Cell reports

Related Resources

Link to Article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.