UMMS Affiliation

Program in Molecular Medicine; Graduate School of Biomedical Sciences

Publication Date


Document Type



Amino Acids, Peptides, and Proteins | Biological Phenomena, Cell Phenomena, and Immunity | Cell Biology | Fungi | Genetic Phenomena | Molecular Biology


Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.


Cell division, DNA replication, Gene expression, Histone post-translational modifications, Transcription

Rights and Permissions

Copyright © The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

DOI of Published Version



Nat Commun. 2019 Sep 26;10(1):4372. doi: 10.1038/s41467-019-12400-5. Link to article on publisher's site

Journal/Book/Conference Title

Nature communications

Related Resources

Link to Article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.