UMMS Affiliation
Graduate School of Biomedical Sciences
Publication Date
2018-11-21
Document Type
Article
Disciplines
Cardiovascular Diseases | Medical Pharmacology | Medicinal and Pharmaceutical Chemistry | Medicinal Chemistry and Pharmaceutics | Molecular, Cellular, and Tissue Engineering | Nanomedicine | Pharmacology | Surgical Procedures, Operative | Therapeutics
Abstract
Cardiovascular diseases are the leading cause of death in the United States. Treatment often requires surgical interventions to re-open occluded vessels, bypass severe occlusions, or stabilize aneurysms. Despite the short-term success of such interventions, many ultimately fail due to thrombosis or restenosis (following stent placement), or incomplete healing (such as after aneurysm coil placement). Bioactive molecules capable of modulating host tissue responses and preventing these complications have been identified, but systemic delivery is often harmful or ineffective. This review discusses the use of localized bioactive molecule delivery methods to enhance the long-term success of vascular interventions, such as drug-eluting stents and aneurysm coils, as well as nanoparticles for targeted molecule delivery. Vascular grafts in particular have poor patency in small diameter, high flow applications, such as coronary artery bypass grafting (CABG). Grafts fabricated from a variety of approaches may benefit from bioactive molecule incorporation to improve patency. Tissue engineering is an especially promising approach for vascular graft fabrication that may be conducive to incorporation of drugs or growth factors. Overall, localized and targeted delivery of bioactive molecules has shown promise for improving the outcomes of vascular interventions, with technologies such as drug-eluting stents showing excellent clinical success. However, many targeted vascular drug delivery systems have yet to reach the clinic. There is still a need to better optimize bioactive molecule release kinetics and identify synergistic biomolecule combinations before the clinical impact of these technologies can be realized.
Keywords
aneurysm, drug delivery, drug eluting stent, nanoparticle, vascular graft, vascular repair, vascular tissue engineering
Rights and Permissions
Copyright © 2018 Strobel, Qendro, Alsberg and Rolle. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI of Published Version
10.3389/fphar.2018.01329
Source
Front Pharmacol. 2018 Nov 21;9:1329. doi: 10.3389/fphar.2018.01329. eCollection 2018. Link to article on publisher's site
Journal/Book/Conference Title
Frontiers in pharmacology
Related Resources
PubMed ID
30519186
Repository Citation
Strobel HA, Qendro EI, Alsberg E, Rolle MW. (2018). Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering. Open Access Publications by UMass Chan Authors. https://doi.org/10.3389/fphar.2018.01329. Retrieved from https://escholarship.umassmed.edu/oapubs/3667
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Cardiovascular Diseases Commons, Medical Pharmacology Commons, Medicinal and Pharmaceutical Chemistry Commons, Medicinal Chemistry and Pharmaceutics Commons, Molecular, Cellular, and Tissue Engineering Commons, Nanomedicine Commons, Pharmacology Commons, Surgical Procedures, Operative Commons, Therapeutics Commons