UMMS Affiliation

Department of Neurology

Publication Date

2018-09-11

Document Type

Article

Disciplines

Biology | Neuroscience and Neurobiology

Abstract

Extracting complex interactions (i.e., dynamic topologies) has been an essential, but difficult, step toward understanding large, complex, and diverse systems including biological, financial, and electrical networks. However, reliable and efficient methods for the recovery or estimation of network topology remain a challenge due to the tremendous scale of emerging systems (e.g., brain and social networks) and the inherent nonlinearity within and between individual units. We develop a unified, data-driven approach to efficiently infer connections of networks (ICON). We apply ICON to determine topology of networks of oscillators with different periodicities, degree nodes, coupling functions, and time scales, arising in silico, and in electrochemistry, neuronal networks, and groups of mice. This method enables the formulation of these large-scale, nonlinear estimation problems as a linear inverse problem that can be solved using parallel computing. Working with data from networks, ICON is robust and versatile enough to reliably reveal full and partial resonance among fast chemical oscillators, coherent circadian rhythms among hundreds of cells, and functional connectivity mediating social synchronization of circadian rhythmicity among mice over weeks.

Keywords

circadian rhythms, complex networks, dynamic topology, network inference, social synchronization

Rights and Permissions

Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

DOI of Published Version

10.1073/pnas.1721286115

Source

Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9300-9305. doi: 10.1073/pnas.1721286115. Epub 2018 Aug 27. Link to article on publisher's site

Journal/Book/Conference Title

Proceedings of the National Academy of Sciences of the United States of America

Related Resources

Link to Article in PubMed

PubMed ID

30150403

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.