UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date

2018-06-26

Document Type

Article

Disciplines

Developmental Biology | Developmental Neuroscience

Abstract

BACKGROUND: Previous work aimed at understanding the gene regulatory networks (GRNs) governing caudal hindbrain formation identified morphogens such as Retinoic Acid (RA) and Fibroblast growth factors (FGFs), as well as transcription factors like hoxb1b, hoxb1a, hnf1ba, and valentino as being required for rhombomere (r) r4-r6 formation in zebrafish. Considering that the caudal hindbrain is relatively complex - for instance, unique sets of neurons are formed in each rhombomere segment - it is likely that additional essential genes remain to be identified and integrated into the caudal hindbrain GRN.

METHODS: By taking advantage of gene expression data available in the Zebrafish Information Network (ZFIN), we identified 84 uncharacterized genes that are expressed in r4-r6. We selected a representative set of 22 genes and assayed their expression patterns in hoxb1b, hoxb1a, hnf1b, and valentino mutants with the goal of positioning them in the caudal hindbrain GRN. We also investigated the effects of RA and FGF on the expression of this gene set. To examine whether these genes are necessary for r4-r6 development, we analyzed germline mutants for six of the genes (gas6, gbx1, sall4, eglf6, celf2, and greb1l) for defects in hindbrain development.

RESULTS: Our results reveal that r4 gene expression is unaffected by the individual loss of hoxb1b, hoxb1a or RA, but is under the combinatorial regulation of RA together with hoxb1b. In contrast, r5/r6 gene expression is dependent on RA, FGF, hnf1ba and valentino - as individual loss of these factors abolishes r5/r6 gene expression. Our analysis of six mutant lines did not reveal rhombomere or neuronal defects, but transcriptome analysis of one line (gas6 mutant) identified expression changes for genes involved in several developmental processes - suggesting that these genes may have subtle roles in hindbrain development.

CONCLUSION: We conclude that r4-r6 formation is relatively robust, such that very few genes are absolutely required for this process. However, there are mechanistic differences in r4 versus r5/r6, such that no single factor is required for r4 development while several genes are individually required for r5/r6 formation.

Keywords

Fibroblast growth factors, Gene regulatory network, Hindbrain, PG1 hox, Retinoic acid, Rhombomere, Valentino, hnf1ba

Rights and Permissions

© The Author(s). 2018 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

DOI of Published Version

10.1186/s13064-018-0112-y

Source

Neural Dev. 2018 Jun 26;13(1):13. doi: 10.1186/s13064-018-0112-y. Link to article on publisher's site

Journal/Book/Conference Title

Neural development

Related Resources

Link to Article in PubMed

PubMed ID

29945667

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.