UMMS Affiliation


Publication Date


Document Type



Allergy and Immunology | Bacterial Infections and Mycoses | Immunity | Immunoprophylaxis and Therapy | Microbiology


Background. Enterotoxigenic Escherichia coli (ETEC) cause diarrheal illness in infants in the developing world and travelers to endemic countries including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion leading to watery diarrhea. There is currently no vaccine licensed to prevent ETEC. CFA/I is one of the most common colonization factor antigens (CFAs). The CFA/I adhesin subunit, CfaE, is required for ETEC adhesion to host intestinal cells. Human antibodies against CfaE have potential to block colonization of ETEC and serve as an immunoprophylactic against ETEC-related diarrhea.

Methods. Mice transgenic for human immunoglobulin genes were immunized with CfaE to generate a panel of human monoclonal IgG1 antibodies (HuMAbs). The most potent IgG1 identified in the in vitro functional assays were selected and isotype switched to secretory IgA (sIgA) and tested in animal colonization assays via oral administration.

Results. Over 300 unique anti-CfaE IgG1 HuMabs were identified. The lead IgG1 anti-CfaE HuMAbs completely inhibited hemagglutination and blocked adhesion of ETEC to Caco-2 cells. Epitope mapping studies revealed that HuMAbs recognized epitopes in the N-terminal domain of CfaE near the putative receptor binding site. Oral administration of anti-CfaE antibodies in either IgG or secretory IgA isotypes inhibited intestinal colonization in mice challenged with ETEC. A two to four log decrease of colony forming units was observed as compared to irrelevant isotype controls.

Conclusions. We identified fully human monoclonal antibodies against CfaE adhesion domain that can be potentially employed as an immunoprophylaxis to prevent ETEC-related diarrhea.


ETEC, CfaE, HuMAb, fimbriae, adhesins

Rights and Permissions

Copyright © 2018 Giuntini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

DOI of Published Version



Infect Immun. 2018 Aug. 86:e00355-18. doi: 10.1128/IAI.00355-18. Link to article on publisher's site

Journal/Book/Conference Title

Infection and immunity

Related Resources

Link to Article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.