UMMS Affiliation

Program in Molecular Medicine; Department of Biochemistry and Molecular Pharmacology

Publication Date


Document Type



Biochemistry, Biophysics, and Structural Biology | Immunology and Infectious Disease | Virology | Viruses


Rhesus TRIM5alpha (rhTRIM5alpha) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5alpha to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the precise site at which the B30.2 domain binds remain largely unknown. The human orthologue of TRIM5alpha (hsTRIM5alpha) fails to block infection by HIV-1 both in vivo and in vitro This is thought to be due to differences in binding to the capsid lattice. To map the species-specific binding surface on the HIV-1 capsid lattice, we used microscale thermophoresis and dual-focus fluorescence correlation spectroscopy to measure binding affinity of rhesus and human TRIM5alpha B30.2 domains to a series of HIV-1 capsid variants that mimic distinct capsid arrangements at each of the symmetry axes of the HIV-1 capsid lattice. These surrogates include previously characterized capsid oligomers, as well as a novel chemically cross-linked capsid trimer that contains cysteine substitutions near the 3-fold axis of symmetry. The results demonstrate that TRIM5alpha binding involves multiple capsid molecules along the 2-fold and 3-fold interfaces between hexamers and indicate that the binding interface at the 3-fold axis contributes to the well-established differences in restriction potency between TRIM5alpha orthologues.

IMPORTANCE TRIM5alpha is a cellular protein that fends off infection by retroviruses through binding to the viruses' protein shell surrounding its genetic material. This shell is composed of several hundred capsid proteins arranged in a honeycomb-like hexagonal pattern that is conserved across retroviruses. By binding to the complex lattice formed by multiple capsid proteins, rather than to a single capsid monomer, TRIM5alpha restriction activity persists despite the high mutation rate in retroviruses such as HIV-1. In rhesus monkeys, but not in humans, TRIM5alpha confers resistance to HIV-1. By measuring the binding of human and rhesus TRIM5alpha to a series of engineered HIV-1 capsid mimics of distinct capsid lattice interfaces, we reveal the HIV-1 capsid surface critical for species-specific binding by TRIM5alpha.


B30.2, CypA, HIV-1, TRIM5, TRIM5α, affinity, binding, capsid, interaction, species specificity

Rights and Permissions

Copyright © 2018 Morger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

DOI of Published Version



J Virol. 2018 Feb 12;92(5). pii: e01541-17. doi: 10.1128/JVI.01541-17. Print 2018 Mar 1. Link to article on publisher's site

Journal/Book/Conference Title

Journal of virology

Related Resources

Link to Article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.