UMMS Affiliation

Department of Neurology

Publication Date

2018-02-21

Document Type

Article

Disciplines

Biology | Computational Biology | Computational Neuroscience | Computer Sciences

Abstract

The ability to define the unique features of an input stimulus needed to control switch-like behavior in biological systems is an important problem in computational biology and medicine. We show in this study how highly complex and intractable optimization problems can be simplified by restricting the search to the signal's extrema as key feature points, and evolving the extrema features towards optimal solutions that closely match solutions derived from gradient-based methods. Our results suggest a model-independent approach for solving a class of optimization problems related to controlling switch-like state transitions.

Keywords

Computational models, Computational neuroscience, Dynamical systems

Rights and Permissions

Copyright © The Author(s) 2018. Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

DOI of Published Version

10.1038/s41598-018-21761-8

Source

Sci Rep. 2018 Feb 21;8(1):3403. doi: 10.1038/s41598-018-21761-8. Link to article on publisher's site

Journal/Book/Conference Title

Scientific reports

Related Resources

Link to Article in PubMed

PubMed ID

29467377

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.