UMMS Affiliation

Department of Medicine, Division of Infectious Diseases and Immunology

Publication Date

3-15-2018

Document Type

Article

Disciplines

Immunology and Infectious Disease | Immunoprophylaxis and Therapy | Infectious Disease | Parasitic Diseases | Parasitology | Public Health | Tropical Medicine

Abstract

Visceral leishmaniasis (VL) is a major public health issue reported as the second illness in mortality among all tropical diseases. Clinical trials have shown that protection against VL is associated with robust T cell responses, especially those producing IFN-gamma. The Leishmania amastigote 2 (A2) protein has been repeatedly described as immunogenic and protective against VL in different animal models; it is recognized by human T cells, and it is also commercially available in a vaccine formulation containing saponin against canine VL. Moving toward a more appropriate formulation for human vaccination, here, we tested a new optimized version of the recombinant protein (rA2), designed for Escherichia coli expression, in combination with adjuvants that have been approved for human use. Moreover, aiming at improving the cellular immune response triggered by rA2, we generated a recombinant live vaccine vector using Trypanosoma cruzi CL-14 non-virulent strain, named CL-14 A2. Mice immunized with respective rA2, adsorbed in Alum/CpG B297, a TLR9 agonist recognized by mice and human homologs, or with the recombinant CL-14 A2 parasites through homologous prime-boost protocol, were evaluated for antigen-specific immune responses and protection against Leishmania infantum promastigote challenge. Immunization with the new rA2/Alum/CpG formulations and CL-14 A2 transgenic vectors elicited stronger cellular immune responses than control groups, as shown by increased levels of IFN-gamma, conferring protection against L. infantum challenge. Interestingly, the use of the wild-type CL-14 alone was enough to boost immunity and confer protection, confirming the previously reported immunogenic potential of this strain. Together, these results support the success of both the newly designed rA2 antigen and the ability of T. cruzi CL-14 to induce strong T cell-mediated immune responses against VL in animal models when used as a live vaccine vector. In conclusion, the vaccination strategies explored here reveal promising alternatives for the development of new rA2 vaccine formulations to be translated human clinical trials.

Keywords

Leishmania infantum, Trypanosoma cruzi CL-14, amastigote 2, vaccine, visceral leishmaniasis

Rights and Permissions

Copyright: © 2018 Almeida, Machado, Doro, Nascimento, Damasceno, Gazzinelli, Fernandes and Junqueira. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

DOI of Published Version

10.3389/fimmu.2018.00465

Source

Front Immunol. 2018 Mar 15;9:465. doi: 10.3389/fimmu.2018.00465. eCollection 2018. Link to article on publisher's site

Journal/Book/Conference Title

Frontiers in immunology

Related Resources

Link to Article in PubMed

PubMed ID

29599776

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.