UMMS Affiliation

Department of Medicine, Division of Rheumatology

Publication Date


Document Type



Musculoskeletal Diseases | Rheumatology


BACKGROUND: Interleukin-17A (IL-17A) plays a pathogenic role in several rheumatic diseases including spondyloarthritis and, paradoxically, has been described to both promote and protect from bone formation. We therefore examined the effects of IL-17A on osteoblast differentiation in vitro and on periosteal bone formation in an in vivo model of inflammatory arthritis.

METHODS: K/BxN serum transfer arthritis was induced in IL-17A-deficient and wild-type mice. Clinical and histologic inflammation was assessed and periosteal bone formation was quantitated. Murine calvarial osteoblasts were differentiated in the continuous presence of IL-17A with or without blockade of secreted frizzled related protein (sFRP)1 and effects on differentiation were determined by qRT-PCR and mineralization assays. The impact of IL-17A on expression of Wnt signaling pathway antagonists was also assessed by qRT-PCR. Finally, regulation of Dickkopf (DKK)1 expression in murine synovial fibroblasts was evaluated after treatment with IL-17A, TNF, or IL-17A plus TNF.

RESULTS: IL-17A-deficient mice develop significantly more periosteal bone than wild-type mice at peak inflammation, despite comparable severity of inflammation and bone erosion. IL-17A inhibits calvarial osteoblast differentiation in vitro, inducing mRNA expression of the Wnt antagonist sFRP1 in osteoblasts, and suppressing sFRP3 expression, both potentially contributing to inhibition of osteoblast differentiation. Furthermore, a blocking antibody to sFRP1 reduced the inhibitory effect of IL-17A on differentiation. Although treatment with IL-17A suppresses DKK1 mRNA expression in osteoblasts, IL-17A plus TNF synergistically upregulate DKK1 mRNA expression in synovial fibroblasts.

CONCLUSIONS: IL-17A may limit the extent of bone formation at inflamed periosteal sites in spondyloarthritis. IL-17A inhibits calvarial osteoblast differentiation, in part by regulating expression of Wnt signaling pathway components. These results demonstrate that additional studies focusing on the role of IL-17A in bone formation in spondyloarthritis are indicated.


Bone, Interleukin-17, Osteoblasts, Spondyloarthritis, Wnt signaling

Rights and Permissions

Copyright © Shaw et al. 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

DOI of Published Version



Arthritis Res Ther. 2016 May 10;18(1):104. doi: 10.1186/s13075-016-0998-x. Link to article on publisher's site

Journal/Book/Conference Title

Arthritis research and therapy

Related Resources

Link to Article in PubMed

PubMed ID


Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.