UMMS Affiliation

Dept of Cell Biology

Publication Date


Document Type



Animals; Cathepsins; Cell Differentiation; Cell Proliferation; Chemokines, CC; Gene Expression Profiling; Glycoproteins; Macrophage Colony-Stimulating Factor; Macrophage Inflammatory Proteins; Osteoclasts; Osteopetrosis; Osteoprotegerin; RNA; Rats; Rats, Inbred Strains; Receptor, Macrophage Colony-Stimulating Factor; Receptors, CCR1; Receptors, Chemokine; Receptors, Cytoplasmic and Nuclear; Receptors, Tumor Necrosis Factor


Cell and Developmental Biology | Cell Biology


Osteoclasts differentiate from hematopoietic precursors under systemic and local controls. Chemokines and receptors direct leukocyte traffic throughout the body and may help regulate site-specific bone resorption. We investigated bone gene expression in vivo during rapid osteoclast differentiation induced by colony-stimulating factor 1 (CSF-1) in Csf1-null toothless (tl/tl) rats. Long-bone RNA from CSF-1-treated tl/tl rats was analyzed by high-density microarray over a time course. TRAP (tartrate-resistant acid phosphatase)-positive osteoclasts appeared on day 2, peaked on day 4, and decreased slightly on day 6, as marrow space was expanding. TRAP and cathepsin K mRNA paralleled the cell counts. We examined all chemokine and receptor mRNAs on the arrays. CCL9 was strongly induced and peaked on day 2, as did its receptor, CCR1, and regulatory receptors c-Fms (CSF-1 receptor) and RANK (receptor activator of nuclear factor kappaB). Other chemokines and receptors showed little or no significant changes. In situ hybridization and immunohistochemistry revealed CCL9 in small, immature osteoclasts on day 2 and in mature cells at later times. Anti-CCL9 antibody inhibited osteoclast differentiation in culture and significantly suppressed the osteoclast response in CSF-1-treated tl/tl rats. While various chemokines have been implicated in osteoclastogenesis in vitro, this first systematic analysis of chemokines and receptors during osteoclast differentiation in vivo highlights the key role of CCL9 in this process.

DOI of Published Version



Blood. 2006 Mar 15;107(6):2262-70. Epub 2005 Nov 22. Link to article on publisher's site

Journal/Book/Conference Title


Related Resources

Link to article in PubMed

PubMed ID


Included in

Cell Biology Commons