Preparation and properties of 99mTc(CO)3+-labeled N,N-bis(2-pyridylmethyl)-4-aminobutyric acid

UMMS Affiliation

Department of Radiology; Department of Nuclear Medicine

Publication Date


Document Type



Aminobutyric Acids; Animals; Mice; Organotechnetium Compounds; Technetium


Life Sciences | Medicine and Health Sciences


Labeling biomolecules with (99m)Tc(CO)(3)(+) ((99m)Tc tricarbonyl) is attracting increasing attention. Although histidine is often considered an ideal bifunctional chelator for (99m)Tc (or (188)Re) tricarbonyl, the family of dipicolylamine carboxylate chelators may be a useful alternative because of the expected ease of synthesis and because the structure provides a pendent carboxylate for potential conjugation to biomolecules. The dipicolylamine chelator N,N-bis(2-pyridylmethyl)-4-aminobutyric acid (BPABA) was synthesized using 4-aminobutyric acid in place of glycine or aminopropionic acid in the literature, to avoid possible involvement of the carboxylate in the complex formation process by forming five- or six-membered chelation rings. Using a commercial tricarbonyl kit (Mallinckrodt), the complex formation properties of both BPABA and commercial histidine with (99m)Tc tricarbonyl were investigated, and the in vitro complex stabilities in saline and in serum were compared. Stability in vivo was also examined following i.v. administration to normal mice. BPABA was synthesized simply and quantitatively by reacting picolyl chloride with aminobutyric acid in one step. On RP HPLC, the product eluted essentially in one peak and the structure was confirmed by ESI-MS. After labeling, both BPABA and histidine were shown by RP HPLC to form tricarbonyl complexes. In both cases, after incubation at 100 degrees C for 20 min, only one predominant peak of (99m)Tc(CO)(3)(+)-histidine or (99m)Tc(CO)(3)(+)-BPABA was apparent, and both complexes were stable at room temperature in saline for at least 24 h. After incubation for 24 h in 37 degrees C serum, by SE HPLC, 20% of the (99m)Tc(CO)(3)(+)-histidine was bound to serum protein compared to less than 10% for (99m)Tc(CO)(3)(+)-BPABA. A 5000 molar excess of histidine at 100 degrees C for 6 h was unable to dissociate (99m)Tc(CO)(3)(+)-BPABA. By contrast, BPABA easily dissociated (99m)Tc(CO)(3)(+)-histidine under the same conditions. Both complexes were stable in vivo in mice, and (99m)Tc(CO)(3)(+)-BPABA showed rapid and specific hepatobiliary clearance while (99m)Tc(CO)(3)(+)-histidine was cleared through the kidneys. In conclusion, BPABA was easily synthesized and was shown to possess properties comparable to histidine for labeling of biomolecules with (99m)Tc tricarbonyl. However, it was found that the chelator concentration required for quantitative (99m)Tc tricarbonyl labeling with both BPABA and histidine were 2 orders higher than that required with more conventional labeling using MAG(3). Finally, the complex (99m)Tc(CO)(3)(+)-BPABA itself was found to clear exclusively via the hepatobiliary pathway and may have value as a potential hepatobiliary imaging agent.

DOI of Published Version



Bioconjug Chem. 2004 Nov-Dec;15(6):1441-6 Link to article on publisher's site

Journal/Book/Conference Title

Bioconjugate chemistry

Related Resources

Link to article in PubMed

PubMed ID