UMMS Affiliation

Brudnick Neuropsychiatric Research Institute; Department of Psychiatry

Publication Date


Document Type



Alcohol-Related Disorders; Animals; Behavior, Animal; Caenorhabditis elegans; Cell Line; Central Nervous System Depressants; Drug Synergism; Drug Tolerance; Ethanol; Humans; Large-Conductance Calcium-Activated Potassium Channel alpha; Subunits; Membrane Lipids; Neurons


Life Sciences | Medicine and Health Sciences


Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-o leoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.

DOI of Published Version



J Biol Chem. 2008 Feb 22;283(8):5090-8. Epub 2007 Dec 15. Link to article on publisher's site

Journal/Book/Conference Title

The Journal of biological chemistry

Related Resources

Link to Article in PubMed

PubMed ID