UMMS Affiliation

Department of Molecular Genetics and Microbiology

Publication Date


Document Type



Cycloheximide; Fungal Proteins; Kinetics; Mutation; Polyribosomes; Protein Biosynthesis; RNA Nucleotidyltransferases; RNA, Fungal; RNA, Messenger; RNA, Transfer; Saccharomyces cerevisiae; Temperature


Life Sciences | Medicine and Health Sciences


To identify trans-acting factors involved in mRNA decay in the yeast Saccharomyces cerevisiae, we have begun to characterize conditional lethal mutants that affect mRNA steady-state levels. A screen of a collection of temperature-sensitive mutants identified ts352, a mutant that accumulated moderately stable and unstable mRNAs after a shift from 23 to 37 degrees C (M. Aebi, G. Kirchner, J.-Y. Chen, U. Vijayraghavan, A. Jacobson, N.C. Martin, and J. Abelson, J. Biol. Chem. 265:16216-16220, 1990). ts352 has a defect in the CCA1 gene, which codes for tRNA nucleotidyltransferase, the enzyme that adds 3' CCA termini to tRNAs (Aebi et al., J. Biol. Chem., 1990). In a shift to the nonpermissive temperature, ts352 (cca1-1) cells rapidly cease protein synthesis, reduce the rates of degradation of the CDC4, TCM1, and PAB1 mRNAs three- to fivefold, and increase the relative number of ribosomes associated with mRNAs and the overall size of polysomes. These results were analogous to those observed for cycloheximide-treated cells and are generally consistent with models that invoke a role for translational elongation in the process of mRNA turnover.


Mol Cell Biol. 1992 Dec;12(12):5778-84.

Journal/Book/Conference Title

Molecular and cellular biology

Related Resources

Link to Article in PubMed

PubMed ID




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.