Title

Neuronal vulnerability and multilineage diversity in multiple sclerosis

UMMS Affiliation

Department of Neurobiology; Brudnik Neuropsychiatric Institute; Schafer Lab

Publication Date

2019-07-17

Document Type

Article

Disciplines

Immune System Diseases | Immunopathology | Nervous System | Nervous System Diseases | Neuroscience and Neurobiology | Nucleic Acids, Nucleotides, and Nucleosides

Abstract

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.

Keywords

Multiple sclerosis, Neuroimmunology

DOI of Published Version

10.1038/s41586-019-1404-z

Source

Nature. 2019 Jul 17. doi: 10.1038/s41586-019-1404-z. [Epub ahead of print] Link to article on publisher's site

Journal/Book/Conference Title

Nature

Comments

Full author list omitted for brevity. For the full list of authors, see article.

Related Resources

Link to Article in PubMed

PubMed ID

31316211

Share

COinS