UMMS Affiliation

Department of Neurobiology; Emery Lab; Graduate School of Biomedical Sciences, Program in Neuroscience

Publication Date

7-4-2018

Document Type

Article

Disciplines

Behavioral Neurobiology

Abstract

Light is one of the chief environmental cues that reset circadian clocks. In Drosophila, CRYPTOCHROME (CRY) mediates acute photic resetting of circadian clocks by promoting the degradation of TIMELESS in a cell-autonomous manner. Thus, even circadian oscillators in peripheral organs can independently perceive light in Drosophila However, there is substantial evidence for nonautonomous mechanisms of circadian photoreception in the brain. We have previously shown that the morning (M) and evening (E) oscillators are critical light-sensing neurons that cooperate to shift the phase of circadian behavior in response to light input. We show here that light can efficiently phase delay or phase advance circadian locomotor behavior in male Drosophila even when either the M- or the E-oscillators are ablated, suggesting that behavioral phase shifts and their directionality are largely a consequence of the cell-autonomous nature of CRY-dependent photoreception. Our observation that the phase response curves of brain and peripheral oscillators are remarkably similar further supports this idea. Nevertheless, the neural network modulates circadian photoresponses. We show that the M-oscillator neurotransmitter pigment dispersing factor plays a critical role in the coordination between M- and E-oscillators after light exposure, and we uncover a potential role for a subset of dorsal neurons in the control of phase advances. Thus, neural modulation of autonomous light detection might play an important role in the plasticity of circadian behavior.SIGNIFICANCE STATEMENT Input pathways provide circadian rhythms with the flexibility needed to harmonize their phase with environmental cycles. Light is the chief environmental cue that synchronizes circadian clocks. In Drosophila, the photoreceptor CRYPTOCHROME resets circadian clocks cell-autonomously. However, recent studies indicate that, in the brain, interactions between clock neurons are critical to reset circadian locomotor behavior. We present evidence supporting the idea that the ability of flies to advance or delay their rhythmic behavior in response to light input essentially results from cell-autonomous photoreception. However, because of their networked organization, we find that circadian neurons have to cooperate to reset the phase of circadian behavior in response to photic cues. Our work thus helps to reconcile cell-autonomous and non-cell-autonomous models of circadian entrainment.

Keywords

Drosophila, behavior, circadian, photoreception

Rights and Permissions

Copyright © 2018 the authors. Publisher PDF posted after 6 months as allowed by the publisher's author rights policy at http://www.jneurosci.org/sites/default/files/files/JN_License_to_Publish.pdf.

DOI of Published Version

10.1523/JNEUROSCI.2259-17.2018

Source

J Neurosci. 2018 Jul 4;38(27):6161-6171. doi: 10.1523/JNEUROSCI.2259-17.2018. Epub 2018 Jun 6. Link to article on publisher's site

Journal/Book/Conference Title

The Journal of neuroscience : the official journal of the Society for Neuroscience

Related Resources

Link to Article in PubMed

PubMed ID

29875268

Available for download on Friday, January 04, 2019

Share

COinS