Title
High-throughput insertion tracking by deep sequencing for the analysis of bacterial pathogens
UMMS Affiliation
Department of Molecular Genetics and Microbiology; Information Services
Publication Date
2011-03-23
Document Type
Book Chapter
Subjects
Animals; Bacteria; Biotin; Biotinylation; Chromosomes, Bacterial; DNA Primers; DNA Transposable Elements; DNA, Bacterial; Genome, Bacterial; Haemophilus influenzae; High-Throughput Nucleotide Sequencing; Mutagenesis, Insertional; Polyadenylation; Reproducibility of Results; Sequence Analysis, DNA
Disciplines
Microbiology | Molecular Genetics
Abstract
Whole-genome techniques toward identification of microbial genes required for their survival and growth during infection have been useful for studies of bacterial pathogenesis. The advent of massively parallel sequencing platforms has created the opportunity to markedly accelerate such genome-scale analyses and achieve unprecedented sensitivity, resolution, and quantification. This chapter provides an overview of a genome-scale methodology that combines high-density transposon mutagenesis with a mariner transposon and deep sequencing to identify genes that are needed for survival in experimental models of pathogenesis. Application of this approach to a model pathogen, Haemophilus influenzae, has provided a comprehensive analysis of the relative role of each gene of this human respiratory pathogen in a murine pulmonary model. The method is readily adaptable to nearly any organism amenable to transposon mutagenesis.
DOI of Published Version
10.1007/978-1-61779-089-8_15
Source
Methods Mol Biol. 2011;733:209-22. Link to article on publisher's website
Journal/Book/Conference Title
Methods in molecular biology (Clifton, N.J.)
Related Resources
PubMed ID
21431773
Repository Citation
Wong SM, Gawronski JD, Lapointe DS, Akerley BJ. (2011). High-throughput insertion tracking by deep sequencing for the analysis of bacterial pathogens. Molecular Genetics and Microbiology Publications. https://doi.org/10.1007/978-1-61779-089-8_15. Retrieved from https://escholarship.umassmed.edu/mgm_pp/30