UMMS Affiliation

Department of Microbiology and Physiological Systems; Program in Immunology and Virology

Publication Date

2012-04-20

Document Type

Article

Subjects

Animals; B-Lymphocytes; Cell Proliferation; Cells, Cultured; DNA Breaks, Double-Stranded; DNA Glycosylases; Deoxyribonuclease (Pyrimidine Dimer); Gene Knockout Techniques; Genes, myc; *Immunoglobulin Class Switching; Immunoglobulin Heavy Chains; Mice; Mice, Inbred C57BL; Mice, Knockout; Real-Time Polymerase Chain Reaction; Recombination, Genetic; Spleen; Transcription, Genetic

Disciplines

Genetics and Genomics | Immunology and Infectious Disease

Abstract

During activation of B cells to undergo class switching, B cell metabolism is increased, and levels of reactive oxygen species (ROS) are increased. ROS can oxidize DNA bases resulting in substrates for the DNA glycosylases Ogg1 and Nth1. Ogg1 and Nth1 excise oxidized bases, and nick the resulting abasic sites, forming single-strand DNA breaks (SSBs) as intermediates during the repair process. In this study, we asked whether splenic B cells from mice deficient in these two enzymes would show altered class switching and decreased DNA breaks in comparison with wild-type mice. As the c-myc gene frequently recombines with the IgH S region in B cells induced to undergo class switching, we also analyzed the effect of deletion of these two glycosylases on DSBs in the c-myc gene. We did not detect a reduction in S region or c-myc DSBs or in class switching in splenic B cells from Ogg1- or Nth1-deficient mice or from mice deficient in both enzymes.

Rights and Permissions

Copyright: © 2012 Ucher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI of Published Version

10.1371/journal.pone.0036061

Source

PLoS One. 2012;7(4):e36061. doi: 10.1371/journal.pone.0036061. Epub 2012 Apr 20. Link to article on publisher's site

Journal/Book/Conference Title

PloS one

Related Resources

Link to Article in PubMed

PubMed ID

22536455

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.