Stephen Jones Lab Publications

UMMS Affiliation

Department of Cell and Developmental Biology

Publication Date


Document Type



Active Transport, Cell Nucleus; Amino Acid Sequence; Animals; Ataxia Telangiectasia Mutated Proteins; Cell Line, Tumor; Cell Nucleus; *DNA Damage; HCT116 Cells; Humans; Karyopherins; MicroRNAs; Molecular Sequence Data; Mutation; Nuclear Pore Complex Proteins; Phosphorylation; Proto-Oncogene Proteins c-akt; Sequence Homology, Amino Acid; Signal Transduction


Cell Biology | Molecular Genetics


Expression of microRNAs (miRNAs) involves transcription of miRNA genes and maturation of the primary transcripts. Recent studies have shown that posttranscriptional processing of primary and precursor miRNAs is induced after DNA damage through regulatory RNA-binding proteins in the Drosha and Dicer complexes, such as DDX5 and KSRP. However, little is known about the regulation of nuclear export of pre-miRNAs in the DNA-damage response, a critical step in miRNA maturation. Here, we show that nuclear export of pre-miRNAs is accelerated after DNA damage in an ATM-dependent manner. The ATM-activated AKT kinase phosphorylates Nup153, a key component of the nucleopore, leading to enhanced interaction between Nup153 and Exportin-5 (XPO5) and increased nuclear export of pre-miRNAs. These findings define an important role of DNA-damage signaling in miRNA transport and maturation.

Rights and Permissions

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI of Published Version



Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, Peng G, Ellis LM, Jones SN, Lu X. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep. 2013 Jun 27;3(6):2100-12. doi: 10.1016/j.celrep.2013.05.038. Link to article on publisher's site

Journal/Book/Conference Title

Cell reports

Related Resources

Link to Article in PubMed



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.