Title
Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2
UMMS Affiliation
Department of Cell Biology; Department of Cancer Biology; Department of Pathology; Program in Molecular Medicine
Publication Date
2007-01-26
Document Type
Article
Disciplines
Cell Biology | Life Sciences | Medicine and Health Sciences
Abstract
Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromatin, co-localize with the RNA Pol I transcription factor UBF1, and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by Runx2 deficiency that results from gene ablation or RNA interference, whereas induction of Runx2 specifically and directly represses rDNA promoter activity. Runx2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1, co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus Runx2 is a critical mechanistic link between cell fate, proliferation and growth control. Our results suggest that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate.
DOI of Published Version
10.1038/nature05473
Source
Nature. 2007 Jan 25;445(7126):442-6. Link to article on publisher's site
Journal/Book/Conference Title
Nature
Related Resources
PubMed ID
17251981
Repository Citation
Young DW, Hassan MQ, Pratap J, Galindo M, Zaidi SK, Lee SH, Yang X, Xie R, Javed A, Underwood JM, Furcinitti PS, Imbalzano AN, Penman S, Nickerson JA, Montecino MA, Lian JB, Stein JL, Van Wijnen AJ, Stein GS. (2007). Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.1038/nature05473. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/515