GSBS Student Publications

Student Author(s)

Ryan T. Hietpas

GSBS Program

Biochemistry & Molecular Pharmacology

Publication Date

2014-03-01

UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Document Type

Article

Disciplines

Ecology and Evolutionary Biology | Genetics and Genomics | Genomics

Abstract

The role of adaptation in the evolutionary process has been contentious for decades. At the heart of the century-old debate between neutralists and selectionists lies the distribution of fitness effects (DFE)--that is, the selective effect of all mutations. Attempts to describe the DFE have been varied, occupying theoreticians and experimentalists alike. New high-throughput techniques stand to make important contributions to empirical efforts to characterize the DFE, but the usefulness of such approaches depends on the availability of robust statistical methods for their interpretation. We here present and discuss a Bayesian MCMC approach to estimate fitness from deep sequencing data and use it to assess the DFE for the same 560 point mutations in a coding region of Hsp90 in Saccharomyces cerevisiae across six different environmental conditions. Using these estimates, we compare the differences in the DFEs resulting from mutations covering one-, two-, and three-nucleotide steps from the wild type--showing that multiple-step mutations harbor more potential for adaptation in challenging environments, but also tend to be more deleterious in the standard environment. All observations are discussed in the light of expectations arising from Fisher's geometric model.

Keywords

Fisher’s geometric model (FGM), adaptation, adaptive walk, distribution of fitness effects, experimental evolution

Rights and Permissions

Copyright © 2014 by the Genetics Society of America. Available freely online through the author-supported open access option.

DOI of Published Version

10.1534/genetics.113.156190

Source

Genetics. 2014 Mar;196(3):841-52. doi: 10.1534/genetics.113.156190. Epub 2014 Jan 7. Link to article on publisher's site

Journal/Book/Conference Title

Genetics

Related Resources

Link to Article in PubMed

PubMed ID

24398421

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.