Academic Program
Neuroscience
UMMS Affiliation
Department of Neurobiology; Alkema Lab; Graduate School of Biomedical Sciences, Neuroscience Program
Publication Date
2014-03-24
Document Type
Article
Disciplines
Behavioral Neurobiology | Molecular and Cellular Neuroscience
Abstract
Understanding how an organism's nervous system transforms sensory input into behavioral outputs requires recording and manipulating its neural activity during unrestrained behavior. Here we present an instrument to simultaneously monitor and manipulate neural activity while observing behavior in a freely moving animal, the nematode Caenorhabditis elegans. Neural activity is recorded optically from cells expressing a calcium indicator, GCaMP3. Neural activity is manipulated optically by illuminating targeted neurons expressing the optogenetic protein Channelrhodopsin. Real-time computer vision software tracks the animal's behavior and identifies the location of targeted neurons in the nematode as it crawls. Patterned illumination from a DMD is used to selectively illuminate subsets of neurons for either calcium imaging or optogenetic stimulation. Real-time computer vision software constantly updates the illumination pattern in response to the worm's movement and thereby allows for independent optical recording or activation of different neurons in the worm as it moves freely. We use the instrument to directly observe the relationship between sensory neuron activation, interneuron dynamics and locomotion in the worm's mechanosensory circuit. We record and compare calcium transients in the backward locomotion command interneurons AVA, in response to optical activation of the anterior mechanosensory neurons ALM, AVM or both.
Keywords
optogenetics, calcium imaging, sensorimotor transformation, mechanosensation, behavior
Rights and Permissions
Copyright © 2014 Shipley, Clark, Alkema and Leifer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
DOI of Published Version
10.3389/fncir.2014.00028
Source
Front Neural Circuits. 2014 Mar 24;8:28. doi: 10.3389/fncir.2014.00028. eCollection 2014. Link to article on publisher's site
Journal/Book/Conference Title
Frontiers in neural circuits
Related Resources
PubMed ID
24715856
Repository Citation
Shipley FB, Clark CM, Alkema MJ, Leifer AM. (2014). Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.3389/fncir.2014.00028. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/1875