Student Author(s)

Christopher M. Clark

Academic Program

Neuroscience

UMMS Affiliation

Department of Neurobiology; Alkema Lab; Graduate School of Biomedical Sciences, Neuroscience Program

Publication Date

2014-03-24

Document Type

Article

Disciplines

Behavioral Neurobiology | Molecular and Cellular Neuroscience

Abstract

Understanding how an organism's nervous system transforms sensory input into behavioral outputs requires recording and manipulating its neural activity during unrestrained behavior. Here we present an instrument to simultaneously monitor and manipulate neural activity while observing behavior in a freely moving animal, the nematode Caenorhabditis elegans. Neural activity is recorded optically from cells expressing a calcium indicator, GCaMP3. Neural activity is manipulated optically by illuminating targeted neurons expressing the optogenetic protein Channelrhodopsin. Real-time computer vision software tracks the animal's behavior and identifies the location of targeted neurons in the nematode as it crawls. Patterned illumination from a DMD is used to selectively illuminate subsets of neurons for either calcium imaging or optogenetic stimulation. Real-time computer vision software constantly updates the illumination pattern in response to the worm's movement and thereby allows for independent optical recording or activation of different neurons in the worm as it moves freely. We use the instrument to directly observe the relationship between sensory neuron activation, interneuron dynamics and locomotion in the worm's mechanosensory circuit. We record and compare calcium transients in the backward locomotion command interneurons AVA, in response to optical activation of the anterior mechanosensory neurons ALM, AVM or both.

Keywords

optogenetics, calcium imaging, sensorimotor transformation, mechanosensation, behavior

Rights and Permissions

Copyright © 2014 Shipley, Clark, Alkema and Leifer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

DOI of Published Version

10.3389/fncir.2014.00028

Source

Front Neural Circuits. 2014 Mar 24;8:28. doi: 10.3389/fncir.2014.00028. eCollection 2014. Link to article on publisher's site

Journal/Book/Conference Title

Frontiers in neural circuits

Related Resources

Link to Article in PubMed

PubMed ID

24715856

Share

COinS