UMMS Affiliation
Department of Biochemistry and Molecular Pharamacology
Publication Date
2013-11
Document Type
Article
Disciplines
Biochemistry | Biophysics | Other Biomedical Engineering and Bioengineering
Abstract
Small-angle X-ray scattering (SAXS) is a well established technique to probe the nanoscale structure and interactions in soft matter. It allows one to study the structure of native particles in near physiological environments and to analyze structural changes in response to variations in external conditions. The combination of microfluidics and SAXS provides a powerful tool to investigate dynamic processes on a molecular level with sub-millisecond time resolution. Reaction kinetics in the sub-millisecond time range has been achieved using continuous-flow mixers manufactured using micromachining techniques. The time resolution of these devices has previously been limited, in part, by the X-ray beam sizes delivered by typical SAXS beamlines. These limitations can be overcome using optics to focus X-rays to the micrometer size range providing that beam divergence and photon flux suitable for performing SAXS experiments can be maintained. Such micro-SAXS in combination with microfluidic devices would be an attractive probe for time-resolved studies. Here, the development of a high-duty-cycle scanning microsecond-timeresolution SAXS capability, built around the Kirkpatrick–Baez mirror-based microbeam system at the Biophysics Collaborative Access Team (BioCAT) beamline 18ID at the Advanced Photon Source, Argonne National Laboratory, is reported. A detailed description of the microbeam small-angle-scattering instrument, the turbulent flow mixer, as well as the data acquisition and control and analysis software is provided. Results are presented where this apparatus was used to study the folding of cytochrome c. Future prospects for this technique are discussed.
Keywords
micro-SAXS, protein folding, time-resolved
Rights and Permissions
Copyright Rita Graceffa et al. 2013.. This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
DOI of Published Version
10.1107/S0909049513021833
Source
Graceffa R, Nobrega RP, Barrea RA, Kathuria SV, Chakravarthy S, Bilsel O, Irving TC. Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray microbeam. J Synchrotron Radiat. 2013 Nov;20(Pt 6):820-5. doi: 10.1107/S0909049513021833. Link to article on publisher's site
Journal/Book/Conference Title
Journal of Synchrotron Radiation
Related Resources
PubMed ID
24121320
Repository Citation
Graceffa R, Nobrega RP, Barrea R, Kathuria SV, Chakravarthy S, Bilsel O, Irving T. (2013). Sub-millisecond time-resolved SAXS using a continuous-flow mixer and X-ray micro-beam. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.1107/S0909049513021833. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/1846
Included in
Biochemistry Commons, Biophysics Commons, Other Biomedical Engineering and Bioengineering Commons