Cell cycle regulation of histone H4 gene transcription requires the oncogenic factor IRF-2

Academic Program

Not applicable

UMMS Affiliation

Graduate School of Biomedical Sciences; Department of Cell Biology and Cancer Center

Publication Date


Document Type



Life Sciences | Medicine and Health Sciences


Histone genes display a peak in transcription in early S phase and are ideal models for cell cycle-regulated gene expression. We have previously shown that the transcription factor interferon regulatory factor 2 (IRF-2) can activate histone H4 gene expression. In this report we establish that a mouse histone H4 gene and its human homolog lose stringent cell cycle control in synchronized embryonic fibroblasts in which IRF-2 has been ablated. We also show that there are reduced mRNA levels of this endogenous mouse histone H4 gene in the IRF-2(-/-) cells. Strikingly, the overall mRNA level and cell cycle regulation of histone H4 transcription are restored when IRF-2 is reintroduced to these cells. IRF-2 is a negative regulator of the interferon response and has oncogenic potential, but little is known of the mechanism of these activities. Our results suggest that IRF-2 is an active player in E2F-independent cell cycle-regulated gene expression at the G1/S phase transition. IRF-2 was previously considered a passive antagonist to the tumor suppressor IRF-1 but can now join other oncogenic factors such as c-Myb and E2F1 that are predicted to mediate their transforming capabilities by actively regulating genes necessary for cell cycle progression.

DOI of Published Version



J Biol Chem. 1998 Jan 2;273(1):194-9.

Journal/Book/Conference Title

The Journal of biological chemistry

Related Resources

Link to Article in PubMed

PubMed ID