GSBS Student Publications


Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes

GSBS Program

Biochemistry & Molecular Pharmacology

UMMS Affiliation

Graduate School of Biomedical Sciences; Program in Molecular Medicine



Document Type


Medical Subject Headings

Acetyltransferases; Catalysis; Chromatin; DNA-Binding Proteins; Fungal Proteins; Histone Acetyltransferases; Histones; Macromolecular Substances; Nuclear Proteins; Protein Kinases; Protein Structure, Tertiary; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; *Trans-Activators; Transcription Factors


Life Sciences | Medicine and Health Sciences


The SANT domain is a novel motif found in a number of eukaryotic transcriptional regulatory proteins that was identified based on its homology to the DNA binding domain of c-myb. Here we show that the SANT domain is essential for the in vivo functions of yeast Swi3p, Ada2p, and Rsc8p, subunits of three distinct chromatin remodeling complexes. We also find that the Ada2p SANT domain is essential for histone acetyltransferase activity of native, Gcn5p-containing HAT complexes. Furthermore, kinetic analyses indicate that an intact SANT domain is required for an Ada2p-dependent enhancement of histone tail binding and enzymatic catalysis by Gcn5p. Our results are consistent with a general role for SANT domains in functional interactions with histone N-terminal tails.

Rights and Permissions

Citation: Mol Cell. 2002 Oct;10(4):935-42.

Related Resources

Link to article in PubMed

Journal Title

Molecular cell

PubMed ID