Title
Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes
Academic Program
Not applicable
UMMS Affiliation
Graduate School of Biomedical Sciences; Department of Internal Medicine III; Department of Cell Biology
Publication Date
1996-11-01
Document Type
Article
Disciplines
Life Sciences | Medicine and Health Sciences
Abstract
The 1 alpha,25-dihydroxyvitamin D3 (VD3)-dependent stimulation of osteocalcin (OC) and osteopontin (OP) gene transcription in bone tissue is mediated by interactions of trans-activating factors with distinct VD3-responsive elements (VDREs). Sequence variation between the OC- and OP-VDRE steroid hormone half-elements provides the potential for recognition by distinct hormone receptor homo- and heterodimers. However, the exact composition of endogenous VD3- induced complexes recognizing the OC- and OP-VDREs in osteoblasts has not been definitively established. To determine the identity of these complexes, we performed gel shift immunoassays with nuclear proteins from ROS 17/ 2.8 osteoblastic cells using a panel of monoclonal antibodies. We show that VD3- inducible complexes interacting with the OC- and OP-VDREs represent two distinct heterodimeric complexes, each composed of the vitamin D receptor (VDR) and the retinoid X receptor-alpha (RXR). The OC- and OP-VDR/RXR alpha heterodimers are immunoreactive with RXR antibodies and several antibodies directed against the ligand-binding domain of the VDR. However, while the OC-VDRE complex is also efficiently recognized by specific monoclonal antibodies contacting epitopes in or near the VDR DNA-binding domain (DBD) (between amino acids 57-164), the OP-VDRE complex is not efficiently recognized by these antibodies. By systematically introducing a series of point-mutations in the OC-VDRE, we find that two internal nucleotides of the proximal OC-VDRE half-site (nucleotide -449 and -448; 5'-AGGACA) determine differences in VDR immunoreactivity. These results are consistent with the well established polarity of RXR heterodimer binding to bipartite hormone response elements, with the VDR recognizing the 3'-half-element. Furthermore, our data suggest that the DBD of the VDR adopts different protein conformations when contacting distinct VDREs. Distinctions between the OC- and OP-VDR/RXR alpha complexes may reflect specialized requirements for VD3 regulation of OC and OP gene expression in response to physiological cues mediating osteoblast differentiation.
DOI of Published Version
10.1210/mend.10.11.8923469
Source
Mol Endocrinol. 1996 Nov;10(11):1444-56.
Journal/Book/Conference Title
Molecular endocrinology (Baltimore, Md.)
Related Resources
PubMed ID
8923469
Repository Citation
Staal A, Van Wijnen AJ, Birkenhager JC, Pols HA, Prahl J, DeLuca HF, Gaub M, Lian JB, Stein GS, van Leeuwen JP, Stein JL. (1996). Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.1210/mend.10.11.8923469. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/1156