GSBS Student Publications

Student Author(s)

Jennifer Calvo

GSBS Program

Cancer Biology

Publication Date

2006-09-07

UMMS Affiliation

Department of Cancer Biology

Document Type

Article

Disciplines

Cancer Biology | Life Sciences | Medicine and Health Sciences

Abstract

Recent work with mouse models and human leukemic samples has shown that gain-of-function mutation(s) in Notch1 is a common genetic event in T-cell acute lymphoblastic leukemia (T-ALL). The Notch1 receptor signals through a gamma-secretase-dependent process that releases intracellular Notch1 from the membrane to the nucleus, where it forms part of a transcriptional activator complex. To identify Notch1 target genes in leukemia, we developed mouse T-cell leukemic lines that express intracellular Notch1 in a doxycycline-dependent manner. Using gene expression profiling and chromatin immunoprecipitation, we identified c-myc as a novel, direct, and critical Notch1 target gene in T-cell leukemia. c-myc mRNA levels are increased in primary mouse T-cell tumors that harbor Notch1 mutations, and Notch1 inhibition decreases c-myc mRNA levels and inhibits leukemic cell growth. Retroviral expression of c-myc, like intracellular Notch1, rescues the growth arrest and apoptosis associated with gamma-secretase inhibitor treatment or Notch1 inhibition. Consistent with these findings, retroviral insertional mutagenesis screening of our T-cell leukemia mouse model revealed common insertions in either notch1 or c-myc genes. These studies define the Notch1 molecular signature in mouse T-ALL and importantly provide mechanistic insight as to how Notch1 contributes to human T-ALL.

Rights and Permissions

Copyright © 2006, American Society for Microbiology. Publisher PDF posted as allowed by the publisher's author rights policy at http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml.

DOI of Published Version

10.1128/MCB.01091-06

Source

Mol Cell Biol. 2006 Nov;26(21):8022-31. Epub 2006 Sep 5. doi:10.1128/MCB.01091-06. Link to article on publisher's site

Journal/Book/Conference Title

Molecular and cellular biology

Related Resources

Link to Article in PubMed

PubMed ID

16954387

Share

COinS