Progression of a vesicular stomatitis virus infection in primary lymphocytes is restricted at multiple levels during B cell activation

UMMS Affiliation

Graduate School of Biomedical Sciences; Department of Molecular Genetics and Microbiology

Publication Date


Document Type



Life Sciences | Medicine and Health Sciences


Small resting B cells do not support a productive vesicular stomatitis virus (VSV) infection, but are induced by B cell activators to become fully permissive for VSV replication. Nonpermissive B cell populations restrict VSV expression at multiple points: transcript levels, translation, and maturation. Unstimulated resting G0 B cells can be infected by VSV and support the synthesis of all VSV mRNAs. Steady-state levels of viral transcripts are selectively enhanced by T cell-derived cytokines to an extent comparable with that seen for cytokine-regulated cellular mRNAs. However, viral proteins are not detected in immunoprecipitates from unstimulated or cytokine-stimulated B cells despite the fact that viral mRNAs are associated with polysomes and can be translated in vitro. This translational block is released by stimulation of infected B cells with mitogenic anti-lg or LPS, or non-mitogenic PMA. VSV virion maturation is also regulated by activation signals, because neither anti-lg nor PMA-stimulated B cells produce high levels of infectious VSV particles. Because anti-lg stimulation supports viral genome replication, maturational arrest is apparently at virus assembly or release. PMA and ionomycin induces changes beyond those seen with anti-lg, because these B cells produce PFUs at levels comparable with those seen with LPS-activated B cells and VSV-permissive cell lines. Activation-dependent regulation of virus expression provides a new paradigm for assessing activator-induced events in B cell differentiation not revealed by previous assessments of proliferation of Ab synthesis.


J Immunol. 1995 Sep 1;155(5):2533-44.

Journal/Book/Conference Title

Journal of immunology (Baltimore, Md. : 1950)

Related Resources

Link to Article in PubMed

PubMed ID