Title
Organization of transcriptional regulatory machinery in osteoclast nuclei: compartmentalization of Runx1
UMMS Affiliation
Graduate School of Biomedical Sciences; Department of Cell Biology
Publication Date
2005-04-14
Document Type
Article
Disciplines
Life Sciences | Medicine and Health Sciences
Abstract
The osteoclast is a highly polarized multinucleated cell that resorbs bone. Using high resolution immunofluorescence microscopy, we demonstrated that all nuclei of an osteoclast are transcriptionally active. Each nucleus within the osteoclast contains punctately organized microenvironments where regulatory complexes that support transcriptional and post-transcriptional control reside. Functional equivalency of osteoclast nuclei is reflected by similar representation of regulatory proteins that support ribosomal RNA synthesis (nucleolin), mRNA transcription (RNA polymerase II, bromouridine triphosphate), processing of gene transcripts (SC35), signal transduction (NF-kappaB), and phenotypic gene expression (Runx1). Our results establish that gene regulatory machinery is architecturally associated and compartmentalized within intranuclear microenvironments of the multiple nuclei of osteoclasts to support physiologically responsive modifications in cellular structural and functional properties.
DOI of Published Version
10.1002/jcp.20329"
Source
J Cell Physiol. 2005 Sep;204(3):871-80. Link to article on publisher's site
Journal/Book/Conference Title
Journal of cellular physiology
Related Resources
PubMed ID
15828028
Repository Citation
Saltman LH, Javed A, Ribadeneyra J, Hussain S, Young DW, Osdoby P, Amcheslavsky A, Van Wijnen AJ, Stein JL, Stein GS, Lian JB, Bar-Shavit Z. (2005). Organization of transcriptional regulatory machinery in osteoclast nuclei: compartmentalization of Runx1. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.1002/jcp.20329". Retrieved from https://escholarship.umassmed.edu/gsbs_sp/1072