Title
Biaxial failure properties of planar living tissue equivalents
UMMS Affiliation
Graduate School of Biomedical Sciences; Department of Physiology
Publication Date
2005-03-12
Document Type
Article
Disciplines
Life Sciences | Medicine and Health Sciences
Abstract
Quantification of the mechanical properties of living tissue equivalents (LTEs) is essential for assessing their ultimate functionality as tissue substitutes, yet their delicate nature makes failure testing problematic. For this study, we evaluated the validity of using an inflation device for quantifying the biaxial tensile failure properties of extremely delicate fibroblast-populated collagen gels (CGs) and fibrin gels (FGs). Small samples were circularly clamped and then inflated until rupture. Each sample assumed an approximately spherical shape and burst at its center indicating effective clamping. After two weeks in culture, all LTEs tested were fragile, but the FGs were significantly stronger and more extensible than the CGs (ultimate tensile strength 6.0 kPa +/- 2.0 kPa vs. 2.8 kPa +/- 0.7 kPa; failure strain 3.5 +/- 0.9 vs. 0.26 +/- 0.05, n = 4). After an additional 11 days of culture, the strength of the FGs increased significantly (26.5 kPa +/- 12.7 kPa), and the extensibility decreased (1.9 +/- 0.8, n = 3). This study demonstrates that subtle differences in the properties of LTEs can be measured using inflation methods with minimal sample handling and without having to grow the tissues into anchors or cut the specimens.
DOI of Published Version
10.1002/jbm.a.30282
Source
J Biomed Mater Res A. 2005 May 1;73(2):182-91. Link to article on publisher's site
Journal/Book/Conference Title
Journal of biomedical materials research. Part A
Related Resources
PubMed ID
15761827
Repository Citation
Billiar KL, Throm AM, Frey MT. (2005). Biaxial failure properties of planar living tissue equivalents. Morningside Graduate School of Biomedical Sciences Student Publications. https://doi.org/10.1002/jbm.a.30282. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/101